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In the present study the authors faced a difficult task, that of clarifying M. A. Lav- 
rent'ev's profound ideas on the mathematical problems of hydrodynamics to his students and 
followers over the past decade. The period up to 1970 is reflected in full detail in a 
survey prepared by the editorial board of the anniversary collection [1] published on the 
occasion of Mikhail Alekseevich's 70th birthday and in his excellent book [2] written in 
collaboration with B. V. Shabat, which has already gone through two editions. In recent 
years, some of the problems posed by M. A. Lavrent'ev and touched upon in the aforementioned 
publications have been fully or partially solved. A description of these (partially unpub- 
lished) results, obtained chiefly by members of the staff at the Hydrodynamics Institute of 
the Siberian Branch of the Academy of Sciences of the USSR, a creation of Mikhail Alekseevich, 
constitutes the substance of this study. 

i. L-Elliptic Systems. In 1946 [3, 4] Lavrent'ev drew attention for the first time to 
a class of nonlinear systems of equations which today are usually called strongly elliptic in 
Lavrent'ev's sense (L-elliptic) 

F(z ,  w, w~, ,v~) - -  L + ~/~ = o (z = x + iy, ,~ = ~ + ir  ( 1 .  l )  

characterized by the property that every bounded solution w = w(z) (z ~ D) is locally homeo- 
morphic in D. The importance of the study of L-elliptic systems of equations is due, in 
particular, to their direct hydrodynamic interpretation: they describe many complex hydro- 
dynamic processes, such as subsonic potential stationary flows of an ideal gas, filtration of 
a liquid in nonuniform anisotropic porous media or of a liquid with a nonlinear law of motion, 
and others. 

On the basis of hydrodynamic considerations, Lavrent'ev describes (i.i) in the form 
of equations in the geometric characteristics Ps, es, As, and 0 s a parallelogram with a 
vertex at the point zo (Ps, length of a side; Us, angle it forms with the axis OX; hs, alti- 
tude opposite the angle 8 s at zo), which is transformed by the tangent mapping 

w = w (~0) + w: (z0) (z- z0) + ~ (~-~), : = I w: 12- I '~I ~ 

into a unit square inclined at an angle s to the axis ~ - Re w. The derivatives w z and W~z 
can be expressed in an elementary manner in terms of H s = h s + i8 s and Ps = Ps + i~s and, 
after substitution into (i.i), lead to an equation in the characteristics which is assumed 
to be solvable for Hs: 

H~ = g~(z, u,, P~) ~ C*(e), V s ~ [0, 2n] .  

According to [3], Eq. (i.i) is L-elliptic if there exists a constant ~ �9 0 such that 

6 < 0 ~ < 2 ~ - - 6 ,  6 < O h J O p ~ < 6 - ' ,  V S ~  [0, 2n] ,  

i.e., the characteristic parallelogram is not degenerate. 

Lavrent'ev showed [4, 5] that the solutions of L-elliptic equa=ions possess many proper- 
ties of conformal mappings and, in particular, satisfy an analog of Riemann's theorem on the 
mapping of simply connected domains. Subsequently, the theory of L-elliptic equations was 
further developed in the works of Lavrent'ev and Shabat [6, 7], which, in addition to other 
interesting results, established some important properties of L-elliptic equations~ the fact 
that they are elliptic in the ordinary sense and the fact that the quantity lw~/wzI~_ qo < 1 
is bounded. 

In 1973 Monakhov [8] (see also [9, i0]) proposed using these properties as the basis for 
a definition and calling Eq. (1.1) L-elliptic if it is elliptic and solvable for ~x, ~y, as 
a result of which it can be written in ~he form 

w~ - -  q (z,. w, ~) w: = O, q ~ C1 (Q) (~ = ~x - -  ir 
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subject to the requirement that Iq(z, w, E)I~- qo < i in ~. Monakhov established the 
equivalence of this definition of L-ellipticity to the geometric definition given by 
Lavrent'ev and proved an existence theorem for the mappings of multiply connected domains 
onto canonical regions by the solutions of L-elliptic equations. In 1974-1976, analogous 
results were obtained in the works of Bojarski and lwanlec [11-13], and Kucher [14] studied 
boundary-value problems for L-elliptic equations. 

In the proof given in [8] for the equivalence of the definitions of L-ellipticity it was 
shown that a direct consequence of uniform ellipticity of Eq. (i.i) will be the inequalities 

where ~ = ~x -- i~y; m = ~y + i~x. It was unexpectedly found that if the inequalities (1.2) 
hold, this guarantees not only local but global solvability of (i.i) for m and ~, which in turn 
ensures global solvability of the equation in the characteristics for H s. Specifically, the 
following statement (Monakhov) holds: 

THEOREM i. Suppose that F(0, 0) = 0 and the function F(~, m) has continuous derivatives 
with respect to ~ and m which satisfy the inequalities (1.2). Then there exists a continuously 
ddifferentiable homeomorphism m(~), m: C § C, m(t) = t = 0, - such that F[~, m(~)] = 0. 

We shall sketch very briefly the proof of this result. From the uniform boundedness and 
from the inequalities (1.2), we have 

Formally differentiating the identity F~ = F[~, m(~)] ~ 0 and substituting the values of 
the derivatives into the relation 

O 00 

Taking account of (1.3) for ~x and ~a, we arrive at the equation 

where qi = ~i (I- [~j[ a)~l- [~z~ala)-*, i, ~ = i, 2, i # J. We arbitrarily fix (~o, too) # 
(0, 0):F(~o, too) = 0 from a neighborhood of he point (0, 0), where the equation F(~, m) = 0 
is locally solvable, and we shall consider ~o = mo= 1 (elongating ~ and m if necessary). We 
shall use the term Q-automorphism to denote homeomorphic mappings m = m(~):C § C, m(t) = 
t = 0.I, -, for which ]m~/m~l~.< " cons= < i, where {m, m*} ~ W~(E), E{I~ [ < i}, p > 2, m*(~) = 
[re(i/e) ] -z . P 

We can convince ourselves that the Q-automorphlsm m ffi ~(~') of Eq. (1.5) is the desired 
implicit function of the equation F(~, m) = 0. Consequently the validity of Theorem 1 can be 
seen from the following assertion. 

THEOREM 2. Let qi(~, m) (i = i, 2) be continuous functions of (~, m) in C a . Then there 
exists a Q-automorphism of Eq. (1.5). 

This theorem is of interest in its own right, since previously, in obtaining similar 
results [15, i0], it was always assumed that the coefficients of Eq. (1.5) have a finite sup- 
port with respect to ~:qi ~ 0, [~I > R (we can assume R = 1). Q-automorphisms of such equa- 
tions (which we shall call Qo-automorphisms) can be sought in the form 

; I (t) at ~ (t) = I, (i. 6) ~ = ( i + a ) ~ + a ~ - - T  t(t--~)' 
E 

obtaining a nonlinear singular integral equation solvable in Lp(E) (p > 2) for the desired 
function f(t). It can be verified that a Q-automorphism of Eq% (1.5) when qa K 0 and q~ is 
arbitrary can be represented in the form m = i/m*(=) (t = I/~(~)) in terms of Qo-automorphisms 
of the equations 

* $ " . . . . . .  

~--gx(~)mx(~ ,~*)~=0 , ~--8~(t)m~(~,~ )~ =0 ( t=l /~) ,  (1.7) 

where m~ = q~(~, l/u*); ma= mx~--~/~t; ~(~) = 1 for IT[~-~ l; ~(T) - 0 for > l, and 
~a(t) = i- ~(I/t). If qa ~ 0, then the Q-automorphism of Eq. (1.5) can be represented in 
implicit form in terms of the Q-automorphisms of q = m,(~) and q = me(m) of the equations 

qx~= 2q~(n~ + V n~--dq~) -~, n~= i + [q~l~-- [q~l z, 
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In an analogous manner, we set 

o~ = tlo~ (h) (h ~ l / ~ ( ~ ) ) ,  

where  ~ i ( ~ i )  and ~ i ( t i )  a r e  t he  qo -au to m crp h i sm s  of  e q u a t i o n s  o f  t h e  form (1 .7 )  w i t h  c o e f -  
f i c i e n t s  d e f i n e d  by the  p r e v i o u s  f o r m u l a s ,  in  which a l l  o f  t h e  q u a n t i t i e s  have  t h e  s u b s c r i p t  
i. Thus, we see in this case also that the q-automorphisms of Eq. (1.5) can be expressed in 
terms of Qo-automorphisms, which with the use of the representations (1.6) for ~i and ~i* 
leads to a system of four nonlinear singular equations solvable in Lp(E) (p > 2). 

2. Two-Dimenslonal Problems of Subsonic Gasdynamlcs. The fundamental model of L-elllp- 
tic systems used by Lavrent'ev was the following system of equations: 

xkp(q)wx = r x~p(q)w~ = - - r  q~=  IVWl ~, d(pq)/dq>~ ~ > O, (2 .1 )  

describing plane (k = 0) and axisymmetric (k = i) potential uniformly subsonic gas flows. 
Here ~ and $ are the potential and the stream function of the flow, respectively; 0 and q are 
the density and the magnitude of the velocity. From the results he obtained [3, 4] for L- 
elliptic equations it follows, in particular, that the plane problem of subsonic potential 
flows of a gas in a channel with curvilinear walls is solvable. The solvability of a some- 
what more complicated problem of flow past a solid with a curved contour within the framework 
of the same model was established in 1954 by Bers (see [16] ). A much more difficult prob- 
lem was that of extending the known results found by Lavrent'ev [17] on the theory of jets 
of an incompressible liquid to the case of subsonic potential gas flows. A characteristic 
feature of Jet problems in hydrodynamics, which makes their investigation much more difficult, 
is the fact that not only the solutions of the appropriate systems of equations but the do- 
mains of definition of the solutions as well are unknown. A broad class of hydrodynamic 
problems with free boundaries (Jet and wave problems, problems in the projection of a wing 
profile on the basis of a known chord diagram, and others) can be described by the following 
boundary conditions, which must be satisfied by the solutions of the equations (2.1): 

a~lan = 0 on r ;  0 = 8(x) on r~; q = q(x, y) on P2, ( 2 . 2 )  

where  8 = a r c t a n  (~y/~x)  i s  t he  a n g l e  of  i n c l i n a t i o n  of  t h e  t a n g e n t  to  a g i v e n  p a r t  F~ o f  t h e  
boundary r of the region of flow, and ra ~ r is a free (unknown) boundary. In 1963-1964 
Monakhov, using a special choice of unknown variables (x and #), reduced the problems 
(2.1), (2.2) to boundary-value problems for a quasilinear degenerate elliptic system of equa- 
tions in a given domain and, for certain conditions on 0(x) and q(x, y), proved in [9] the 
solvability of these problems in the plane case. A detailed discussion of these results is 
given in [i0], which also gives the generalizations, obtained in 1969, of theorems concerning 
the existence of solutions in some of the problems (2.1), (2.2) to the case of doubly con- 
nected regions (S. N. Antontsev) and to the case of eddying flows of a compressible liquid 
(P. I. Plotnikov). Axisymmetric problems of the type of (2.1), (2.2) were first studied in 
[18], and in Antontsev's book [19] these results were extended to the case of transonic gas 
flows, when degeneracy of the system (2.1) (d(qp)/dq = 0) is allowed. In [19] Antontsev 
proved the finiteness of the propagation of perturbations in a number of Jet problems (a 
consequence of the degeneracy of (2.1)), a fact first established by Ovsyannlkov [20] for the 
problem of gas flow out of a vessel with rectilinear walls. 

3. Problem of Conformal and Quasiconformal Gluing. Lavrent'ev [21] first formulated 
and solved the problem of conformal gluing, and he subsequently proposed the formulation of 
a general problem of quaslconformal gluing [22], which we shall state in the somewhat more 
general form commonly used today. Let D + be a finite simply or multiply connected domain with 
boundary P = ~D + and D- = C\D+. It is required to find homeomorphic solutions ~ = ~• ~• 
D • § ~• ~+ U ~- = C of equations which are L-elliptic in D • and are rela~ed by the following 
gluing conditions for the images of the points t and a(t) lying on F: 

o+[a(t)] = ~-(t),  t ~ F, (3.1) 

where a(t) is the homeomorphism F § F. Conformal-gluing problems (i.e., problems in which 
+ 

m- are holomorphlc in D • have been widely applied to the solution of more compllcated bound- 
ary-value problem in the theory of anal[tic functions, for example, that of Carleman's 
problem, in which the desired functions #-(z), I~-(-)] < -, which are holomorphic in D • 
satisfy on F the condition 

�9 +[a(t)] = ao(t)~'(t ) -~ al(t), a o =~ O, t e~ F. ( 3 . 2 )  
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We denote by z• • § D • the mappings which are inverse to the solution of the conformal- 
gluing problem (3.1) and set ~(~) ~ r177177 ~ ~• Then the Carleman problem (3.2) 
reduces to the Riemann problem 

~ (~) = A0 (~) CT (o) + A 1 (o), ~ ~ OA +. 

which has been studied in considerable detail. 

The solvability of the conformal-gluing problem for a simply connected domain bounded 
by a Lyapunov curve, on the assumption that a~Ca+8(F), was proved by Mandzhavidze and 
Khvedelidze [23], and in that work they also established for the first time the conformal 
equivalence of the Carleman and Riemann problems. For multiply connected domains an analo- 
gous result was obtained in [24] for weaker assumptions concerning displacement; a~ Ct+8(?). 
It should be noted that earlier, Volkovyskii [25] studied a special problem in conformal 
gluing for a~Ct(F). 

Antontsev and Monakhov [10, 26] established the solvability of the above-mentioned quasi- 
conformal-gluing problem for quasilinear elliptic equations (1.5) in the case of multiply 
connected domains, and on the basis of this result they studied the Carlemann problem and 
more general boundary-value problems when there was displacement in the boundary conditions. 
In this case the requirements on the smoothness of the boundary F and the displacement a(t) 
are much weaker: the connected components of F are assumed to be quaslconformal curves 
(images of a circle under quasiconformal mappings), and the a(t) are assumed to be limiting 
values of the quasiconformal mapping u:D + § D+,la~/azl ~ qo < i, which does not, in general, 
have derivatives on F. 

How "bad" these quasiconformal curves are can be seen from the well-known example given 
by Ponomarev [27], who constructed in the neighborhoods ~• c D • (D-~U D- = C) of the curve 
F holomorphic functions ~• which can be continued on F to a function that is continuous 
but not holomorphic in ~ = (~+U ~'U F); this function is ~(z) = ~+(z) (z~ ~ +) and ~ = u-(z) 
( z ~ - ) .  

For  n o n l i n e a r  L - e l l i p t i c  e q u a t i o n s  t h e  p rob lem of  q u a s i c o n f o r m a l  g l u i n g  has  no t  been  
solved up t o  the present time. 

4. Harmonic Mappings. In 1962-1967 Lavrent'ev lald the foundations of the theory of 
mappings of three-dimenslonal domains corresponding to system of partial differential equa- 
tions. It should be noted that the connection between quasiconformal mappings of multidimen- 
sional euclidean spaces and the theory of differential equations is not so close as in the 
plane case. 

On the basis of hydrodynamic considerations, Lavrent'ev distinguished two classes of 
mappings of three-dimensional domains in R s, which he called harmonic mappings. 

The first class includes the mappings x + u(z) satisfying a system of four differential 
equations 

r o t u  = O, div u = O. (4.1) 

In simply connected domains the solutions of (4.1) admit of the representation u = V~, in 
which ~ is an arbitrary harmonic function. Harmonic mappings satisfy many theorems of the 
theory of functions of a complex variable. We shall formulate two of them. The first 
assertion is given in [28]: 

THEOREM 3. Let u r 0 be the solution of Eqs. (4.1) and suppose that the Jacobian J(x) 
of the mapping u(x) vanishes at the point Xo, which is in the interior of the domain of 
definition of u. Then in any neighborhood of xo the function J(x) changes sign. An obvious 
consequence of this theorem is the following: 

THEOREM 4. Suppose that the sequence u n of solutions of (4.1) which are one-sheet func- 
tions in the ball Bz:Ixl < 1 converges at every point of B, to the harmonic mapping u. Then 
u is also a one-sheet function in Bt. 

The question of the existence of harmonic mappings of given domains was first considered 
by Lavrent'ev in 1967. In [29] he proved the solvability of the problem of the harmonic map- 
ping of a layer {zo(xt, x~) < x, < zt(x,, xa)} of the space R 3 onto the layer {0 < u, < H} 
lying in the space of points u = (u,, u=, us), on the assumption that the functions z i, which 
are three times continuously differentiable, will tend at an exponential rate to different 
constant values as xat + x~ + -. In [29, 30] he formulated a number of hypotheses concerning 
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the existence of harmonic mappings of simply connected domains and, in particular, the pos- 
slbility of harmonic mappings of a ball onto a three-axis ellipsoid and of a ball onto it- 
self. 

The solution of the last problem was given by Antontsev [31]. We give below a state- 
ment of the results. We shall denote by B% the family of ellipsoids of revolution 

B~ {x:x[Tx~-~kx~<'l}. 

there exists a harmonic function ~ = ~ (/x~ + x] xa) THEOREM 5. For every % [t/~, ~) 

which belongs to the space C (Bt) and whose gradient diffeomorphically maps the ball Bt onto 
B% in a manner which preserves orientation. 

The proof is based on the fact that when there is axial symmetry, the problem of the 
harmonic mapping of a ball onto a solid of revolution reduces to finding a quasiconformal 
mapping of a circular disk onto the intersection of this solid of revolution with a meridional 
plane. 

It is not known at present whether there are any harmonic mappings of a ball even onto 
regions close to the ellipsoids BX. Therefore it is important to investigate the following 
problem concerning the stability of harmonic mappings. 

We consider a one-parameter family of simply connected domains ~ (E>/0) with boundaries 
of the class C ~ given by the equations fo(u) + ~f(u) = const, and we shall suppose that the 
mapping uo = V~o (A~o = 0) of the ball B~ onto ~o is known. 

The following question arises: what conditions must be satisfied by the family ~ in order 
that for every c belonging to an interval [0, ~o) there should exist a harmonic mapping ue of 
the ball B: onto the domain ~. 

The solution of this problem reduces to finding a harmonic function ~E(x) satisfying the 
boundary condition 

/o(V%) + ~(Vge ) = const  for lxl = 1. 

I n  a f i r s t  a p p r o x i m a t i o n  w i t h  r e s p e c t  t o  E, f o r  t h e  d i f f e r e n c e  ~ = ~ e  - - ~ o ,  we c a n  o b t a i n  a 
boundary-value problem with the inclined derivative 

a . v ~  = g for Ixl = 1, ( 4 . 2 )  

where 
s 

a = / o . .  (V~o); g = - 81 (V~o).  

If problem (4.2) is nondegenerate (the product a.x does not vanish on the unit sphere), then 
the solution of the problem of the stability of the harmonic mapping is found by the method 
of successive approximation. Unfortunately, this case is rarely encountered; the following 
assertion (P. I. Plotnikov) holds: If the domain ~o is convex, then there exists on the unit 
sphere a point Xo such that a(Xo).Xo = 0. 

The proof is based on the fact that for the assumptions we have made, we have the repre- 
sentation 

a.x  = bi~%,~izS, b~sz~Z s ~ O, 

which, together with the Zaremba--Hopf theorem, guarantees that the condition a.x = 0 will be 
satisfied at least at one point xo, Ixol = i. 

This makes the problem very difficult. Nevertheless, it appears that a solution of the 
problem can be obtained by making use of the existing investigations of the problem with an 
inclined derivative [32]. 

5. Generalizations of =he CauchT--Riamann System. The second class of quasiconformal 
mappings of three-dlmensional domains considered by Lavrent'ev is related to systems of third- 
order differential equations: 

VUx = ~ ( I v u x l ) V u s x V u 3 .  ( 5 . 1 )  

On the basis of g e o m e t r i c  considers=ions, Lavrent'ev proved in [29] that the system (5.i) is 
a natural generalization of the Cauchy--Riemann equations. The equations (5.1) admit of an 
obvious hydrodynamic interpretation. The function u~ is the flow potential of a barotropic 
liquid and satisfies the equation 
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div [%-I(IVUll)VUl] = O. 

The components u2, u3 of u are constant on the trajectories of the dynamic system ~ = Vu~ and 
consequently serve as the streamlines of the flow generated by the potential u~. 

The first investigation of these mappings was given in [33], in which the author con- 
structs a number of exact solutions of system (5.1) whose analogs are linear fractional, 
exponential, and logarithmic functions of a complex variable. 

Th~ problem of the mappings of domains of the three-dimensional layer type by the solu- 
tions of Eqs. (5.1) were considered by Plotnikov [34, 35]. We give one of the results he 
obtained. 

Suppose that D is a layer in R a which is bounded by smooth surfaces So:x3 = zo(x~, x~) 
and S~:x3 = zo + h(x,, x2). We assume that as x~ § • the surface So tends at an exponen- 
tial rate to the planes x3 = tan 0.x~, x3 = 0, and the "depth" h correspondingly tends to 
some limiting values h• We fix a smooth mapping v = (v~, vs) (preserving an element of 
area) of the strip 0 < x3 < h-(x2) lying in the plane xl, x3 onto a rectilinear strip 0 < v~ < 
H. We consider in D the following boundary-value problem for the harmonic function u,: 

Vul .n  = O o n  S O U $1, ( 5 . 2 )  

l 
where the unit vectors are p- ffi (i, O, 0), p+ = (cos 8, O, sin 8). 

THEOREM 6. If problem (5.2) has a solution satisfying the inequality llnlVu~il <co < 
~, then there exists a unique solution of Eqs. (5.1) with % = 1 (unique to within an additive 
constant) which homeomorphically maps D onto the layer {0 < u~ < H} and satisfies the normal- 
ization conditions 

u~--+v~ as x ~ - - + - - o ~ ,  ] = 2, 3. 

The hypothesis of the theorem is satisfied, e.g., in the case when the derivatives 
Zo,x=, hx 2 are sufficiently small. 

6. Wave Theory. In 1957, in analyzing the phenomenon of tsunamis, Lavrent'ev advanced 
the hypothesis that an irregularity in the bottom of a body of water, such as an underwater 
ridge, could serve as a waveguide for surface waves. This problem gave rise to a number of 
investigations [36-39] carried out in the years 1959-1975 at the Hydrodynamics Institute of 
the Siberian Branch of the Academy of Sciences of the USSR. In 1965 R. M. Galineina con- 
firmed the validity of Lavrent'ev's hypothesis within the framework of the linear theory of 
waves. We shall consider these results in more detail. Assume that an ideal incompressible 
liquid fills a domain D ~ R s bounded by a "free surface"-- the plane F:xs = 0 and the bottom 
F c :x3 = --i + ~h(xa). The finite infinitely differentiable function h >/0 defines the shape 
of an underwater ridge. The Cauchy-Poisson problem of nonstationary waves on the surface of 
an ideal liquid reduces to finding the flow potential -- the harmonic function ~(t, x) satis- 
fying the boundary conditions 

%t+g?xg=O on r,v~.n=0 on F~ (6.1) 

and the initial conditions 

(P],ffio = %, q)tlt=o = % on r .  ( 6 . 2 )  

The wave process is accompanied by a waveguide effect if the problem (6.1) has a solution 

(p=e~(~t-wl)CD(x2, xa), r as x2-+oo" ( 6 . 3 )  

In the general case it must be shown that the solution of the Cauchy--Poisson problem (6.1), 
(6.2) admits of the asymptotic representation 

q~ = ~ ah (t) r (t, x) + q~* (t, x), 
k = l  

in which the ~k have the form (6.3) and the remainder term ~* is small in comparison with 
the a k. 

The proof of the existence of solutions of (6.1) in the form of waves traveling along 
an underwater ridge can be reduced [36, 39] to the proof of the existence of nontrivial solu- 
tions, damped at infinity, of the integrodifferential equation 
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d2tt 
dx---~ + %u ---- gA (8, %) u (6.4) 

where u(x2) is the restriction of 0 to the plane P. Here A is self-adjoint compact operator 
in the scale of Sobolev spaces s ~0. In [39] it was established =hat the existence of nega- 
tive eigenvalues of (6.4) and the corresponding rapidly decreasing eigenfunctions is a conse- 
quence of a general assertion for a broad class of compact operators which are not necessarily 
self-adjoint. In [37] i= was shown that the terms corresponding to the elgenfunctions of 
(6.4) in the asymptotic solution of the Cauchy--Foisson problem (1.7), (2.1) are ak~ k with 
a k ~ t uk, u k > --i. The question of estimating the remainder term ~* which results from the 
continuous spectrum of (6.4) remains unanswered. We should expect, by analogy with the case 
of a smooth bottom (g = 0), considered in [40], that along the ridge ~* ~ t -t but no rigor- 
ous proof of this is available. 

7. Three-Dimensional Flows with Free Boundaries. The theory of three-dimensional flows 
with free boundaries is a branch of hydrodynamics which has not been extensively developed 
thus far. Its basic outlines were given by Lavrent'ev in 1962-1968. In [41] he considered 
a three-dlmensional variant of Kirchhoff's problem concerning =he potential motion of a layer 
of incompressible liquid with a free boundary and proposed some methods for solving it. In 
[2] Lavrent'ev and Shabat formulated a number of problems concerning three-dimensional waves 
and Jet flow. 

The correctness of the formulation of the problem of three-dimensional potential flows 
of an ideal liquid was first investigated in [42]. It was found =hat this problem is degen- 
erate and its formulation must be determined by the geometry of the flow. In [43] Plotnikov 
solved a problem stated by Lavrent'ev [2] concerning three-dlmensional gravitational waves 
on the surface of a layer of ideal incompressible liquid. The problem reduces to finding a 
free surface S with the graph 

x~ = 8 c o s  klz~ c o s  k~x~ + ~1(8, x,, x~) ---- Z 

and a flow potential which is a function @ harmonic in the layer {--h < x, < Z} and satisfies 
the equations 

~,=0 for zg=--h; IV~I ~+~Iz~=%zon S, 
Vq~.n = 0 on S,  ( 7 . 1 )  

where the X i are parameters. The solution of problem (7.1) should be sought in the class of 
smooth 2~-periodic functions ~, x~ -- ~ in the variables x~, xa. The fundamental difference 
between this problem and the analogous two-dimensional problems of wave theory consists in the 
fact that the eigenvalues of the three-dimensional linear problem of wave theory -- the linear- 
ization of (7.1) on the trivial solution Z = const, ~ = x, -- are everywhere dense on the posi- 
tive semiaxis. Using the method of accelerated convergence, the following assertion was 
proved in [43]. 

Theorem 7. In the space of parameters Xi, h there exists a nonempty set A at every 
point of which there branches off from the trivial solution Z = const a one-parameter family 
of solutions of the problem ~(e), q(E), Xi(g). The following estimate holds: 

i[ ~1(~){Ic~(.D ~ const e2, r /> 3. 
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SUPPRESSION OF TURBULENCE IN THE CORES OF CONCENTRATED VORTICES 

V. A. Vladimirov, B. A. Lugovtsov, 
and V. F. Tarasov 

UDC 532.527+532.517.4 

i. The problem of the motion of vortex rings has intrigued researchers for more than a 
century now [i]. On the initiative of M. A. Lavrent'av, the Institute of Hydrodynamics of 
the Siberian Branch of the Academy of Sciences of the USSR has been conducting experimental 
and theoretical studies for several years on this effect and other rotational flows of 
liquids and gases [2]. A mathematical model for the description of the motion of turbulent 
vortex rings has bean proposed on the basis of an analysis of the experimental facts [3, 4]. 
This model rests on the hypothesis that the turbulent nature of the motion and the transport 
of a tracer impurity by it can be described by means of scalar coefficients of turbulent 
viscosity ~ and turbulent diffusion x that vary with time but do not depend on the space 
coordinates. The additional assumption of flow self-similarity, which is highly consistent 
with the experimental results, has made it possible to calculate the structure of a vortex 
ring in the vanishlng-viscosity limit [5]; the theory in this case does not contain any 
empirical constants. However, a comparison of the calculations with the existing experimental 
results discloses a significant discrepancy in the vicinity of the core of the vortex ring. 

It is now clear that the principal cause of this discrepancy is the assumption of turbu- 
lence "uniformity" throughout the vortex volume. The results of qualitative experiments and 
certain theoretical considerations [6] indicate that the core of the vortex ring is almost 
completely devoid of turbulent tracer transport (the "laminar core" effect) in connection 
with strong turbulent tracer transport in the atmosphere of the vortex ring. This turbulence 
suppression is caused by the presence in rapidly rotating flow of a singular "elasticity" 
associated with the gyroscopic behavior of the fluid particles. 

The unsteadiness of the flow in the vortex makes it exceedingly difficult to study the 
effect discovered in [6]. In this article we describe experiments by which it is possible to 
observe a similar effect under steady-state conditions; we also present a qualitative explana- 
tion of the effect and propose simple models of the turbulent stresses and tracer transport 
in the cores of line and ring vortices. 
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